IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 43, NO. 5, MAY 1995

1173

A Comprehensive Study of Numerical Anisotropy
and Dispersion in 3-D TLM Meshes

Pierre Berini, Student Member, IEEE, and Ke Wu, Senior Member, IEEE

Abstract—This paper presents a comprehensive analysis of the
numerical anisotropy and dispersion of 3-D TLM meshes con-
structed using several generalized symmetrical condensed TI.M
nodes. The dispersion analysis is performed in isotropic lossless,
isotropic lossy and anisotropic lossless media and yields a com-
parison of the simulation accuracy for the different TLM nodes.
The effect of mesh grading on the numerical dispersion is also
determined. The results compare meshes constructed with Johns’
symmetrical condensed node (SCN), two hybrid symmetrical
condensed nodes (HSCN) and two frequency domain symmetrical
condensed nodes (FDSCN). It has been found that under certain
circumstances, the time domain nodes may introduce numerical
anisotropy when modelling isotropic media.

1. INTRODUCTION

NUMBER of generalized 3-D TLM nodes are presently

capable of simulating Maxwell’s curl equations in both
the time and frequency domains. However, as a consequence
of spatial sampling, all TLM nodes introduce numerical disper-
sion into the field caiculations [1], [2]. Computational issues
usually favor the use of one node versus another; the numerical
dispersion introduced by the nodes is usually not considered
due to a lack of comparative information. Furthermore, it is
expected that the amount of numerical dispersion associated
with a particular node may vary as a function of mesh grading
and the properties of the medium modelled.

The numerical dispersion of expanded and condensed 3-
D TLM meshes was originally investigated by Nielsen and
Hoefer [3]-[6] where a uniform mesh is used to model free
space. Their findings support the use of the condensed mesh
versus the expanded mesh.

The dispersion of a 3-D frequency domain node [7] is
reported in [8] where the mesh grading and the properties
of the medium are varied. A significant difference was ob-
served between the dispersion characteristics of the graded
and uniform meshes in [8]. As pointed out by our reviewers, a
dispersion analysis of time and frequency domain meshes was
recently reported by the same authors [9]. We cannot comment
on the contents of this paper as it was inaccessible at the time
of publication.

Section II of this paper includes a brief review of the
numerical dispersion relation originally derived by Nielsen and
Hoefer [3], [4]. A more general formulation of this method is
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presented such that the dispersion analysis may be carried out
in anisotropic and lossy media using any 3-D TLM node. In
Section III, the dispersion characteristics of various 3-D TLM
meshes are given for different modelling requirements. Five
3-D SCN’s are used; they include three time domain nodes:
Johns” SCN [10]-[13], the type I HSCN [14]-[16] and the type
II HSCN [16]. Two frequency domain nodes are also included:
the type I FDSCN [7], [17]-{19] and the type II FDSCN [19],
[20]. The above nodes share the common characteristics of
being symmetrical, condensed and reasonably general; the type
I FDSCN, however, cannot model material anisotropy.

II. FORMULATION

A. Generalized Numerical Dispersion Relation

The analysis technique for numerical dispersion described
in [4] consists in computing the propagation constant of an
arbitrary plane wave propagating on an infinite homogeneous
mesh constructed from identical 3-D TLM nodes. This is
achieved by solving the following determinantal equation:

|PQ—W|=0 M
where
Q=U+S,)T (2)
and
W =I1+TS5,1T. (3)

[I](12x12) is the identity matrix. S, is the frequency domain
scattering matrix of the node used to create the mesh and is
defined at the center of the node, not at the input/output plane
of the link lines.

The propagation matrix T represents the connection be-
tween nodes and has the following non-zero elements:

Ty =Tigp = ¢ V=2

Tpp =Tog=e =52

Tys =T = e TPvie

Ty =Tgg = e~ YauAs

Tss =Try=e =5

Te,6 =T10,10 = €725, C))
The propagation constants -y;; are associated with the link lines
according to Fig. 1. The subscripts ¢j indicate the direction of

propagation and the polarization, respectively, of the associ-
ated voltage wave. This definition of matrix 1" is necessary
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Fig. 2. Dispersion characteristics of case study given in Table I.

to accommodate nodes that vary the propagation constant of
the link lines to model certain properties of the medium or to
account for a graded mesh.

Matrix P represents Floquet’s theorem, relating the total
voltages at one node to the total voltages at the neighboring
nodes along this periodic network. The superscript m denotes
the mesh propagation constants

~ Com
Prig =€y, Py = e Tty

Pyg =eT5ef, Pyy = e 1A

s

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 5, MAY 1995

By/8
1
R
0.8 i
0.6 .
Dispersionless
€ OF fi, = pp—
€ OF fp = 16 e
0.4 + 4
i
4
0.2 Ay
o] L 1 L
0] 0.2 0 0.6 0.8 1
818

Fig. 3. Dispersion characteristics of case study given in Table I. BA, =

1.8 throughout.

m
_ As
Py =elev=e,

YA
Pyg=eT%2,
P577 = éY;nZAya

e S Yae D
P10 =eT=="2,

T
Piy3 = e Vavte

bres

Pgy=e "t
M

Prs = e Tt

Prog = e Vexte, )

This new definition of matrix P allows the determina-
tion of the numerical dispersion characteristics in lossy and

anisotropic media.
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Fig. 4. Dispersion characteristics of case study given in Table I. 8A, =
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Fig. 5. Dispersion characteristics of case study given in Table I. BA, =
1.8 throughout.

The dispersion of a mesh is obtained by solving numeri-
cally the determinantal equation (1) for the mesh propagation
constant of an arbitrary ‘plane wave. In practice, this can be
achieved by finding the values ;7 that minimise the absolute
value of the determinant in (1) for a given wave orientation.

It must be noted that the formulation of the dispersion
relation given in [3] is numerically equivalent to (1).

B. Transformation of a Time Domain Node
to the Frequency Domain

The dispersion analysis of a TLM mesh is carried out in the
frequency domain. Furthermore, the scattering event does not
occur but is implied through the use of the frequency domain
voltage scattering matrix S,, and the transmission matrix T
defined above. If a generalized time domain node is used to
create the mesh then this node must be transformed to an
equivalent frequency domain node. This is accomplished by
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TABLE 1
CASE STUDY OF LossLEss IsoTRoPIC MEDIA MODELLED
USING A UNIFORM MESH. FIGURE CROSS-REFERENCING. VER:
VERTICAL POLARIZATION, HOR: HORIZONTAL POLARIZATION

Medium SCN HSCNI | HSCNII
e | pr || Ver-| Hor | Ver | Hor | Ver | Hor
1 1 2 21 2 2 2 2
2 1 4 3 3 4
16 1 4 3 4 3 3 4
tf2 |34 ]4]3]|3]4
1116 3 4 4 3 3 4
2 2 2 2 6 5 5 6
16 | 16 2 2 6 5 5 6

treating the voltage impulses as complex voltage waves and by
absorbing the stubs into an equivalent 12 x 12 stubless matrix,
according to basic S matrix theory.

Consider for example the 18 x 18 voltage scattering matrix
of an arbitrary time domain SCN, loaded with both open and
short circuit stubs. This matrix can be decomposed into four
submatrices as follows [18]:

I:V:n ] _ [[Smm](lzx 12) [Sms](12><6) } I:V:n} (6)
VZ h [Ssm](ﬁxlz) [Sss](GXG) st

where the subscript m refers to the 12 mesh lines and s refers
to the 6 possible open and short circuit stubs. In the frequency
domain, the relationship between the voltage waves incident
to and reflected from the stubs is written

Vi = [Ty]diage 7% V7 : Q)
where [[';]giag is a diagonal matrix constructed from the
reflection coefficient of the stubs and 8, refers to the phase
shift encountered by a voltage wave during the return trip
through a stub. The matrix [I's|qiag is defined as

Fi,i =41, for¢ =1, 2,3
T;;=-1, fori=4,5,6. ®)
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Fig. 7. Dispersion characteristics of a graded mesh modelling free space and
constructed with type I FDSCN’s. Cell dimensions: A, = A, = 10 cm and
Ay =5 cm.
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Fig. 8. Dispersion characteristics of a graded mesh modelling free space and
constructed with SCN’s. Cell dimensions; A, = 10 cm, Ay = 15 cm, and
A, =5 cm.

Using the above equations, we can reduce the original 18 x
18 time domain scattering matrix to an equivalent stubless 12
x 12 frequency domain scattering matrix S,

Vi, = [SalVi, 9)

where

diagonal
I, N

Sp = mm + Sms (ejQS [Fs] - Sss)_l Sem 10
which is similar to the result given in [18]. The reference plane
can be moved from the center of the node to the input/output
port of the link lines by multiplying [S,] with e~% . The
matrix S, defined by (10) can be used directly in (2) and (3)
and the elements of 1" are 7}; = e~9%.

Johns® symmetrical condensed node: We can directly iden-
tify the submatrices [Smm]lleg, [Sms]12><67 [Ssm]6X12 and
[Ssslexs for Johns’ SCN [10]-[13]. The lower 6 x 18 sub-
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Fig. 9. Dispersion characteristics of a graded mesh modelling free space and
constructed with HSCN’s; vertical pol.: HSCN I and horizontal pol.: HSCN
1. Cell dimensions: A, = 10 cm, A, = 15cm, and A, = 5 cm.
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Fig. 10. Dispersion characteristics of a graded mesh modelling free space
and constructed with HSCN’s; vertical pol.: HSCN II and horizontal pol.:
HSCN I. Cell dimensions: A, = 10 cm, Ay =15cm,and A, = 5 cm.

matrix represents scattering into the matched loss stubs; it is
not included in the frequency domain matrix as these stubs
do not return their impulses to the node. The time step A is
chosen in the usual manner as the largest possible value that
ensures positive characteristic impedances for the permittivity
and permeability stubs. The phase shift 8, is defined for. Johns’
SCN as 0, = wA,.

Hybrid symmetrical condensed nodes: Both hybrid nodes
given in [16] can be transformed to the frequency domain
using (8) and (10) directly. It must be noted that the hybrid
nodes are described using an 18 x 18 scattering matrix with
appropriate null elements [16]. This contrasts with the alternate
description of the HSCN found in [14]. For both types of
HSCN’s, the phase shift 6, is defined as 6, = GyA; /2 where
Bo = w/eg and cg = 1/,/eopg. This is the same phase shift
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Fig. 11. Dispersion characteristics of a graded mesh constructed with type I
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Fig. 12. Dispersion characteristics of a graded mesh constructed with type
11 FDSCN’s. Cell dimensions: Az = 10 cm, Ay = 15 ¢m, and A, = 5 cm.

as in Johns’ SCN since the time step for the hybrid nodes is
taken as A; = A;/(2¢o).

Frequency domain symmetrical condensed nodes: Both
SCN’s derived in the frequency domain [7], [19] can be
used without modification in the dispersion analysis. The
scattering matrix S, and the propagation constant of the link
lines defined in [7], [19] are used directly in (2)—(4).

III. NUMERICAL RESULTS AND DISCUSSION

The dispersion characteristics given in this section are
obtained using the technique presented above. In part A,
lossless isotropic media is considered; in part B, the mesh
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Fig. 13. Dispersion characteristics of a uniform mesh constructed with
SCN’s and modelling a lossy isotropic medium characterized by € = pr =
5-55. (a) Normalized attenuation constant. (b) Normalized phase constant.

grading is varied; in part C, lossy isotropic media is modelled
and in part D, lossless anisotropic media. In all cases vertically
and horizontally polarized plane waves are swept through all
angles in the plane considered. Generally three frequencies are
analysed in order to vary the coarseness of the mesh. '

A. Lossless Isotropic Media

The permittivity and permeability of the medium are var-
ied in order to observe changes in the dispersion charac-
teristics of the homogeneous meshes created using the five
nodes described above. A uniform mesh, A, = A, =
A, = 5 cm, is used to generate Figs. 2-6. The phase con-
stant 3 is that of a plane wave propagating in the medium
considered.

The first medium modelled is free space. This is a natural
starting point as all nodes considered, reduce in this case,
to the same node in the frequency domain. Fig. 2 gives the
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Fig. 14. Dispersion characteristics of a uniform mesh modelling various lossy 1sotropic media and constructed with FDSCN’s. (a) Normalized attenuation

constant. |v|A: = 1.8 throughout.

free space dispersion characteristics; the results are identical
to those given in [4] and [8].

The dispersion characteristics of the FDSCN mesh remain
identical to those given in Fig. 2, regardless of the permittivity
or permeability of the medium. Two cases were analysed to
confirm this, the first ¢, = 4, p,, = 1 and the second ¢, =
25, p = 20. This observation is consistent with the results
given in [8]. It must be noted that if the mesh is uniform and
the medium considered is isotropic, both FDSCN’s are in fact
the same node.

The various media modelled using the time domain nodes
are summarized in Table I where they are cross-referenced
with the appropriate figures. For example, according to Table
I, Fig. 4 gives the dispersion characteristics for the vertical
polarization of a plane wave propagating in a medium char-
acterized by ¢, = 2 and p, = | and modelled with a SCN
mesh.

From Figs. 3-6 we observe that the time domain nodes
introduce anisotropy into the dispersion characteristics when
the permittivity or permeability of the medium differs from
free space. Anisotropy is observed when the phase constant of
a vertically polarized wave differs from that of a horizontally
polarized wave. If a wave propagates in the zy plane, the
electric field of the vertically polarized wave will be directed
along the z axis whereas the electric field of the horizontaily
polarized wave will be in the zy plane.

The dispersion characteristics of the SCN mesh are identical
to the type I HSCN mesh if y, = 1 or to the type Il HSCN
mesh if €, = 1; this is expected when a uniform mesh is used,
as the HSCN’s are identical to the SCN in those circumstances.
It is interesting to note that the dispersion characteristics of the
meshes constructed with HSCN’s are complementary; that is,
the dispersion of the vertical polarization of an HSCN I mesh
is identical to the dispersion of the horizontal polarization
of an HSCN II mesh and vice versa. For the special case
where ¢, = p,, > 1 the dispersion characteristics for the SCN
remain identical to those given in Fig. 2. We note that the time
domain meshes are isotropic for the limiting case of axial
propagation. The anisotropy introduced by the time domain
nodes are responsible for the separation of the degenerate
TE/TM11 and TE/TM21 modes of the rectangular waveguide
analysed in [19].

B. Grading

The effect of grading on the dispersion characteristics of the
five meshes is investigated. In Figs. 7-12, the phase constant 3
is that of a plane wave propagating in the medium considered.
In all cases the analysis frequency was increased until (1) could
no longer be easily minimized.

Fig. 7 illustrates the dispersion characteristics of a plane
wave propagating in free space. The graded mesh is con-
structed using the type I FDSCN and the cell dimensions are
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Ay = A, =10 cm and Ay = 5 cm. Perfect agreement is
observed with the results given in [8].

Figs. 8—12 display the dispersion characteristics of a plane
wave propagating in the xy plane. A graded mesh of dimen-
sions Ay = 10 cm, Ay = 15 cm, and A, = 5 cm is used.
The time domain meshes model free space.

Both HSCN’s introduce anisotropy when a graded mesh
1s used. Fig. 9 gives the dispersion characteristics of the
vertically polarized wave on the type I HSCN mesh and
of the horizontally polarized wave on the type II HSCN
mesh; Fig. 10 shows the dispersion characteristics of the
vertically polarized wave on the type Il HSCN mesh and of the
horizontally polarized wave on the type I HSCN mesh. Once
again, the dispersion characteristics of the HSCN meshes are
complementary. For the limiting case of axial propagation,
the HSCN meshes are isotropic. By comparing Fig. 8 with
Figs. 9 and 10 we note that the HSCN meshes introduce less
dispersion than the SCN mesh along a principal axis. This
observation is consistent with the results given in [14].

The dispersion characteristics plotted in Figs. 11 and 12,
obtained using the frequency domain nodes, were found to be
invariant regardless of the permittivity and permeability of the
medium,; this is consistent with the observations made in the
preceeding section. Such an invariance however, should not
be expected from the time domain nodes except perhaps for
the SCN if €, = p,.

It is observed, by comparing Fig. 9 with Figs. 8, 11, and
12, that one of the polarizations supported by an HSCN mesh

suffers much less numerical dispersion. This suggests that even
though the HSCN’s introduce numerical anisotropy, they may
yet model more accurately certain electromagnetic modes on
a graded mesh.

C. Lossy Isotropic Media

Complex permittivities and permeabilities are now intro-
duced in order to observe changes in the dispersion char-
acteristics of the meshes for lossy media. A uniform mesh,
Ay =A, =A, =5cm, is used to generate Figs. 13 and 14.
The propagation constant v = « + j3 is that of a plane wave
propagating in the medium considered.

Fig. 13 gives the dispersion curves of an SCN mesh mod-
elling a lossy medium characterized by ¢, = p,. =5-55. Once
again, we note that in this special case, the node does not
introduce anisotropy.

The dispersion characteristics for a mesh constructed with
HSCN’s are difficult to obtain in lossy media due to the
anisotropy that is introduced; (1) cannot easily be minimized. It
can however be said that they are complementary and that the
horizontal polarization for a type 1 HSCN mesh and the vertical
polarization for a type I HSCN mesh are similar, though more
dispersive, than the characteristics shown in Fig. 13.

The dispersion characteristics of a mesh constructed with
FDSCN’s are, in contrast to time domain nodes, quite easy to
obtain; a more thorough case study is thus given in Fig. 14.
Contrary to the observations made in Section I, the dispersion
characteristics of meshes constructed with FDSCN’s are found
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Fig. 15. Dispersion characteristics of a uniform mesh constructed with various SCN’s and modelling an anisotropic lossless medium characterized by

€xx,r = 4, €yy» = 8 and €., » = 12. (a) zy plane. (b) zz plane. (c) zy plane. 3A, = L8 throughout.

to vary in lossy media. They are however only sensitive to the
ratios €’ /¢/, 4/ /pi' and not to the actual values of permittivity
and permeability.

D. Lossless Anisotropic Media

A lossless anisotropic medium described by a diagonal
permittivity tensor is now considered. In a biaxial medium, the
velocity of a plane wave is dependent on the orientation of its
wave normal. In general, there can exist only two forward and
two backward propagating waves for each direction of wave

normal. The two forward propagating waves for example,
correspond to the two eigenwaves or polarizations permitted
by the medium for the given wave normal. The velocity of
these eigenwaves are obtained from Fresnel’s equation of wave
normals [21], [22]

2

bi(”;y - U;%)(vzz - IU]%) + b;(vim - 'U]%)(,ng - Up)
+ 022, —v2)(vy, —v2) =0 (11)
where v, is the velocity of the eigenwaves and b,,by and b,
are the components of the unit vector normal to the wave,
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defined as
b|Dx H (12)

D is the electric flux density and H the magnetic field
intensity. vz, vy, and v, are the wave velocities along the
principal axes ‘

Co Co Co

= s Uyy = y Vzz =
where co = 1/,/€opig. Fresnel’s equation of wave normals is
a quadratic equation in vf, that can be. solved analytically.
Two solutions for vg are obtained; they correspond to the
two allowed polarizations associated with the given wave
normal. The two roots of v2 correspond to the forward and
backward travelling waves, thus four velocities are obtained
per wave normal. Equation (11) is solved in order to generate
the theoretical dispersionless curves presented in this section.

Fig. 15 compares the dispersion characteristics of four uni-
form meshes, A, = A, = A, =5 cm, in a medium
characterized by €;5, = 4, €y = 8 and €., , = 12, The
type I FDSCN is not included in these results as it cannot
model anisotropy. The frequency of analysis is chosen such
that BA, = 1.8 where [ is the phase constant of a plane wave
propagating in an isotropic medium having €, = 12

Vzx 2 (13)

IV. CONCLUSION

A thorough study of the numerical dispersion of various 3-D

TLM meshes has been presented. Five symmetrical condensed
nodes including three time domain and two frequency domain
nodes were used to construct the meshes. The dispersion char-
acteristics were obtained in lossless isotropic, lossy isotropic
and lossless anisotropic media. The effect of mesh grading
has also been investigated.

The results obtained reveal that under certain circumstances,
the time domain nodes introduce anisotropy into the dispersion
characteristics of isotropic media. It also appears that the
ability of the. time domain nodes to simulate lossy media
is limited to the case where the losses are small. The most
significant degradation of the dispersion characteristics, how-
ever, occur when a coarse graded mesh is used, indicating
that the largest cell dimension should be much smaller than
the smallest wavelength under consideration.

The best way to improve TLLM simulation accuracy is of
course mesh refinement. The results presented in this paper,
however, are of particular importance if a coarse mesh must
be used as the numerical dispersion and anisotropy introduced
may significantly corrupt the field calculations. In such a case,
these results may be used as an aid in the selection of the node
best suited to specific modelling requirements.’
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