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A Comprehensive Study of Numerical Anisotropy

and Dispersion in 3-D TLM Meshes
Pierre Berini, Student Member, IEEE, and Ke Wu, Senior Member, IEEE

Abstract-This paper presents a comprehensive analysis of the
numerical anisotropy and dispersion of 3-D TLM meshes con-
structed using several generalized symmetrical condensed TLM
nodes. The dispersion aualysis is performed in isotropic Iossless,

isotropic lossy and anisotropic lossless media and yields a com-
parison of the simulation accuracy for the different TLM nodes.

The effect of mesh grading on the numerical dispersion is also

determined. The results compare meshes constructed with Johns’

symmetrical condensed node (SCN), two hybrid symmetrical

condensed nodes (HSCN) and two frequency domain symmetrical
condensed nodes (FDSCN). It has been found that under certain
circumstances, the time domain nodes may introduce numerical

anisotropy when modelling isotropic media.

I. INTRODUCTION

A NUMBER of generalized 3-D TLM nodes are presently

capable of simulating Maxwell’s curl equations in both

the time and frequency domains. However, as a consequence

of spatial sampling, all TLM nodes introduce numerical disper-

sion into the field calculations [1], [2]. Computational issues

usually favor the use of one node versus another; the numerical

dispersion introduced by the nodes is usually not considered

due to a lack of comparative information. Furthermore, it is

expected that the amount of numerical dispersion associated

with a particular node may vary as a function of mesh grading

and the properties of the medium modelled.

The numerical dispersion of expanded and condensed 3-

D TLM meshes was originally investigated by Nielsen and

Hoefer [3]–[6] where a uniform mesh is used to model free

space. Their findings support the use of the condensed mesh

versus the expanded mesh.

The dispersion of a 3-D frequency domain node [7] is

reported in [8] where the mesh grading and the properties

of the medium are varied. A significant difference was ob-

served between the dispersion characteristics of the graded

and uniform meshes in [8]. As pointed out by our reviewers, a

dispersion analysis of time and frequency domain meshes was

recently reported by the same authors [9]. We cannot comment

on the contents of this paper as it was inaccessible at the time

of publication.

Section II of this paper includes a brief review of the

numerical dispersion relation originally derived by Nielsen and

Hoefer [3], [4]. A more general formulation of this method is
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presented such that the dispersion analysis may be carried out

in anisotropic and lossy media using any 3-D TLM node. In

Section III, the dispersion characteristics of various 3-D TLM

meshes are given for different modelling requirements. Five

3-D SCN’S are used; they include three time domain nodes:

Johns’ SCN [10]–[1 3], the type I HSCN [14]–[16] and the type

II HSCN [16]. Two frequency domain nodes are also included:

the type I FDSCN [7], [17] -[19] and the type II FDSCN [19],

[20]. The above nodes share the common characteristics of

being symmetrical, condensed and reasonably general; the type

I FDSCN, however, cannot model material anisotropy.

II. FORMULATION

A. Generalized Numerical Dispersion Relation

The analysis technique for numerical dispersion described

in [4] consists in computing the propagation constant of an

arbitrary plane wave propagating on an infinite homogeneous

mesh constructed from identical 3-D TLM nodes. This is

achieved by solving the following determinantal equation:

IPQ-WI=O (1)

where

Q = (1+ S.)T (2)

and

W = I + TSnT. (3)

[~](lz~ 12) is the identity matrix. S~ is the frequency domain
scattering matrix of the node used to create the mesh and is

defined at the center of the node, not at the input/output plane

of the link lines.

The propagation matrix T represents the connection be-

tween nodes and has the following non-zero elements:

T1,l = T12,12 = e–7’” A’

T2,2 = T9,9 = e-7z’Az

T3,3 = Tll,ll = e–7” A’

Td,d = T8,8 = e–7z’Az

T5,5 = T7,7 = e–7’z A’

TG,G =TIo,1o = e–7’zA”. (4)

The propagation constants vii are associated with the link lines

according to Fig. 1. The subscripts ij indicate the direction of

propagation and the polarization, respectively, of the associ-

ated voltage wave. This definition of matrix T is necessary

0018–9480/95$04.00 0 1995 IEEE
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Fig. 1. TLM Symmetrical Condensed Node,
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Fig. 2. Dispersion characteristics of case study given in Table I.

to accommodate nodes that vary the propagation constant of

the link lines to model certain properties of the medium or to

account for a graded mesh.

Matrix P represents Floquet’s theorem, relating the total

voltages at one node to the total voltages at the neighboring

nodes along this periodic network. The superscript m denotes

the mesh propagation constants
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Fig. 3. Dispersion characteristics of case study given in Table I. fi~z =
1.8 throughout.

P3,11 = e7;YAz , P11,3 = e–7GAx

P4,8 = e~~~z, P8,4 = e–7~Az

P5,7 = e~~~v, P~,~ = e–7ZAY

P(j,lI) = e7gz Az, PIO,fj = ‘e–7Zz A’. (5)

This new definition of matrix P allows the determina-

tion of the numerical dispersion characteristics in lossy and

anisotropic media.
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Fig. 4. Dispersion characteristics of case stndy given in Table I. /3Az =
1.8 throughout.
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Fig. 5. Dispersion characteristics of case study given in Table I. /3Az =
1.8 throughout.

The dispersion of a mesh is obtained by solving numeri-

cally the determinantal equation (1) for the mesh propagation

constant of an arbitrary plane wave. In practice, this can be

achieved by finding the values VZT that minimise the absolute

value of the determinant in (1) for a given wave orientation.

It must be noted that the formulation of the dispersion

relation given in [3] is numerically equivalent to (1).

B. Transformation of a Time Domain Node

to the Frequency Domain

The dispersion analysis of a TLM mesh is carried out in the

frequency domain. Furthermore, the scattering event does not

occur but is implied through the use of the frequency domain

voltage scattering matrix S’m and the transmission matrix T

defined above. If a generalized time domain node is used to

create the mesh then this node must be transformed to an

equivalent frequency domain node. This is accomplished by
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Fig. 6. Dispersion characteristics of case study given in Table I. ,/3Az =

1.8 tbroughont.

TABLE I
CASE STUDY OF LOSSLESSISOTROPICMEDIA MODELLED

USING A UNIFORM MESH. FIGURE CROSS-REFERENCING.VER:
VERTICAL POLARIZATION, HOR: HORIZONTAL POLARIZATION

Medium SCN HSCN I HSCN 11

f, k Ver nor Ver Hor Ver HOI

1 1 2 2’ 2 2 2 2

2 1 4 3 4 3 3 4

16 1 4 3 4 3 3 4

1 2 3 4 4 3 3 4

1 16 3 4 4 3 3 4

2 2 2 2 6 5 5 6

16 16 2 2 6 5 5 6

treating the voltage impulses as complex voltage waves and by

absorbing the stubs into an equivalent 12x 12 stubless matrix,

according to basic S matrix theory.

Consider for example the 18 x 18 voltage scattering matrix

of an arbitrary time domain SCN, loaded with both open and

short circuit stubs. This matrix can be decomposed into four

submatrices as follows [18]:

[1[
v~

1[”1
[&m](12x12) [L%s](12x6) ;;

v: =
[&n](6x12) [s&$1(6x6) s

(6)

where the subscript m refers to the 12 mesh lines and s refers

to the 6 possible open and short circuit stubs. In the frequency

domain, the relationship between the voltage waves incident

to and reflected from the stubs is written

v: = [rs]diage–~es v: (7)

where [rs ]diag is a diagonal matrix constructed from the

reflection coefficient of the stubs and 0. refers to the phase

shift encountered by a voltage wave during the return trip

through a stub. The matrix [I’.] diag is defined as

ri,i =+1, for2=l,2,3

r~,j = –1, for z = 4,5,6. (8)
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Fig. 7. Dispersion characteristics of a graded mesh modelling free space and
constructed with type I FDSCN’s. Cell dimensions: AZ = A% = 10 cm and

Av = 5 cm.
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Fig. 8. Dispersion characteristics of a graded mesh modelling free space and

constructed with SCN’s. Cell dimensions; Az = 10 cm, /lv = 15 cm, and
AZ = 5 cm.

Using the above equations, we can reduce the original 18 x

18 time domain scattering matrix to an equivalent stubless 12

x 12 frequency domain scattering matrix Sn

v~ = [sn]v~ (9)

where
diagonal

S. = Smm + sm. -S,m (lo)

which is similar to the result given in [18]. The reference plane

can be moved from the center of the node to the input/output

port of the link lines by multiplying [Sn] with e-~ffs. The

matrix Sm defined by (10) can be used directly in (2) and (3)

and the elements of T are Ti,i = e–~d’.

Johns’ symmetrical condensed node: We can directly iden-
tify the submatrices [Smm]lz Xlz, [smS]laXG, [sSn]GXlz and

[S’S,]GXG for Johns’ SCN [10] -[13]. The lower 6 x 18 sub-
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Fig. 9. Dispersion characteristics of a graded ‘mesh modelling free space and

constructed with HSCN’s; vertical pol.: HSCN I and horizontal pol.: HSCN

II. Cell dimensions: Am = 10 cm, Av = 15cm, and Az = 5 cm,
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Fig. 10. Dispersion characteristics of a graded mesh modelling free space

and constructed with HSCN’s; vertical pol.: HSCN II and horizontal pol.:

HSCN I. Cell dimensions: & = 10 cm, fly = 15 cm, and A= = 5 cm.

matrix represents scattering into the matched loss stubs; it is

not included in the frequency domain matrix as these stubs

do not return their impulses to the node. The time step At is

chosen in the usual manner as the largest possible value that

ensures positive characteristic impedances for the permittivity

and permeability stubs. The phase shift 9S is defined for Johns’

SCN as OS = wAt.

Hybrid symmetrical condensed nodes: Both hybrid nodes

given in [16] can be transformed to the frequency domain

using (8) and (10) directly. It must be noted that the hybrid

nodes are described using an 18 x 18 scattering matrix with

appropriate null elements [16]. This contrasts with the alternate

description of the HSCN found in [14]. For both types of

HSCN’S, the phase shift d, is defined as 0. = floAz/2 where

PO = CLJ/COand co = l/@EI. This is the same phase shift
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Fig. 11. Dispersion characteristics of a graded mesh constructed with type I

FDSCN’S. Cell dimensions: & = 10 cm, Av = 15 cm, and ~, = 5 cm.
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Fig. 12. Dispersion characteristics of a graded mesh constructed with type
II FDSCN’S. Cell dimensions: A. = 10 cm, & = 15 cm, and a, = 5 cm.

as in Johns’ SCN since the time step for the hybrid nodes is

taken as @.t = At/(2co).

Frequency domain symmetrical condensed nodes: Both

SCN’s derived in the frequency domain [7], [19] can be

used without modification in the dispersion analysis. The

scattering matrix Sv and the propagation constant of the link
lines defined in [7], [19] are used directly in (2)–(4).

III. NUMERICAL RESULTS AND DISCUSSION

The dispersion characteristics given in this section are

obtained using the technique presented above. In part A,

lossless isotropic media is considered; in part B, the mesh
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Fig. 13. Dispersion characteristics of a uniform mesh constructed with

SCN’s and modelling a 10SSYisotropic medium characterized by c, = p, =
5-j5. (a) Normalized attenuation constant. (b) Normalized phase constant.

grading is varied; in part C, lossy isotropic media is modelled
and in part D, lossless anisotropic media. In all cases vertically

and horizontally polarized plane waves are swept through all

angles in the plane considered. Generally three frequencies are

analysed in order to vary the coarseness of the mesh.

A, Lossless Isotropic Media

The permittivity and permeability of the medium are var-

ied in order to observe changes in the dispersion charac-

teristics of the homogeneous meshes created using the five
nodes described above. A uniform mesh, Az = AY =

A= = 5 cm, is used to generate Figs. 2–6. The phase con-

stant ,6 is that of a plane wave propagating in the medium

considered.
The first medium modelled is free space. This is a natural

starting point as all nodes considered, reduce in this case,

to the same node in the frequency domain. Fig. 2 gives the
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Fig. 14. Dispersion characteristics of a uniform mesh modelling various 10SSYIsotropic media and constructed with FDSCN’s. (a) Normalized attenuation
constant, ]-I IA, = 1.8 throughout.

free space dispersion characteristics; the results are identical

to those given in [4] and [8].

The dispersion characteristics of the FDSCN mesh remain

identical to those given in Fig. 2, regardless of the permittivity

or permeability of the medium. Two cases were analysed to

confirm this, the first e. = 4, /Lr = 1 and the second EV =

25, ~r = 20. This observation is consistent with the results

given in [8]. It must be noted that if the mesh is uniform and

the medium considered is isotropic, both FDSCN’s are in fact

the same node.

The various media modelled using the time domain nodes

are summarized in Table I where they are cross-referenced

with the appropriate figures. For example, according to Table

I, Fig. 4 gives the dispersion characteristics for the vertical

polarization of a plane wave propagating in a medium chw-

acterized by e. = 2 and p. = 1 and modelled with a SCN

mesh.

From Figs. 3–6 we observe that the time domain nodes

introduce anisotropy into the dispersion characteristics when

the permittivity or permeability of the medium differs from

free space. Anisotropy is observed when the phase constant of

a vertically polarized wave differs from that of a horizontally

polarized wave. If a wave propagates in the xv plane, the

electric field of the vertically polarized wave will be directed

along the z axis whereas the electric field of the horizontally

polarized wave will be in the m dane.

The dispersion characteristics of the SCN mesh are identical

to the type I HSCN mesh if ~. = 1 or to the type II HSCN

mesh if Cr = 1; this is expected when a uniform mesh is used,

as the HSCN’s are identical to the SCN in those circumstances.

It is interesting to note that the dispersion characteristics of the

meshes constructed with HSCN’s are complementary; that is,

the dispersion of the vertical polarization of an HSCN I mesh

is identical to the dispersion of the horizontal polarization

of an HSCN II mesh and vice versa. For the special case

where e. = p. > 1 the dispersion characteristics for the SCN

remain identical to those given in Fig. 2. We note that the time

domain meshes are isotropic for the limiting case of axial

propagation. The anisotropy introduced by the time domain
nodes are responsible for the separation of the degenerate

TE/TMl 1 and TE/TIv121 modes of the rectangular waveguide

analysed in [19].

B. Grading

The effect of grading on the dispersion characteristics of the

five meshes is investigated. In Figs. 7–12, the phase constant@

is that of a plane wave propagating in the medium considered.

In all cases the analysis frequency was increased until(1) could

no longer be easily minimized.

Fig. 7 illustrates the dispersion characteristics of a plane

wave propagating in free space. The graded mesh is con-
structed llsin~ the type 1 FDSCN and the cell dimensions are
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.& = Lz = 10 cm and Ay = 5 cm. Perfect

observed with the results given in [8].

agreement is

Figs. 8–12 display the dispersion characteristics of a plane

wave propagating in the zg plane. A graded mesh of dimen-

sions A. = 10 cm, Ay = 15 cm, and AZ = 5 cm is used.

The time domain meshes model free space.

Both HSCN’S introduce anisotropy when a graded mesh

is used. Fig. 9 gives the dispersion characteristics of the

vertically polarized wave on the type I HSCN mesh and

of the horizontally polarized wave on the type II HSCN

mesh; Fig. 10 shows the dispersion characteristics of the

vertically polarized wave on the type II HSCN mesh and of the

horizontally polarized wave on the type I HSCN mesh. Once

again, the dispersion characteristics of the HSCN meshes are

complementary. For the limiting case of axial propagation,

the HSCN meshes are isotropic. By comparing Fig. 8 with

Figs. 9 and 10 we note that the HSCN meshes introduce less

dispersion than the SCN mesh along a principal axis. This

observation is consistent with the results given in [14].

The dispersion characteristics plotted in Figs. 11 and 12,

obtained using the frequency domain nodes, were found to be

invariant regardless of the permittivity and permeability of the

medium; this is consistent with the observations made in the

preceding section. Such an invariance however, should not

be expected from the time domain nodes except perhaps for

the SCN if e, = p,.

It is observed, by comparing Fig. 9 with Figs. 8, 11, and

12, that one of the polarizations supported by an HSCN mesh

suffers much less numerical dispersion. This suggests that even

though the HSCN’s introduce numerical anisotropy, they may

yet model more accurately certain electromagnetic modes on

a graded mesh.

C. Lossy Isotropic Media

Complex permittivities and permeabilities are now intro-

duced in order to observe changes in the dispersion char-

acteristics of the meshes for Iossy media. A uniform mesh,

A= = AY = AZ = 5 cm, is used to generate Figs. 13 and 14.

The propagation constant y = a + j/3 is that of a plane wave

propagating in the medium considered.

Fig. 13 gives the dispersion curves of an SCN mesh mod-

elling a lossy medium characterized by q- = LLT=5-j5. Once

again, we note that in this special case, the node does not

introduce anisotropy.

The dispersion characteristics for a mesh constructed with

HSCN’s are difficult to obtain in lossy media due to the

anisotropy that is introduced; (1) cannot easily be minimized. It

can however be said that they are complementary and that the

horizontal polarization for a type I HSCN mesh and the vertical

polarization for a type II HSCN mesh are similar, though more

dispersive, than the characteristics shown in Fig. 13.

The dispersion characteristics of a mesh constructed with

FDSCN’s are, in contrast to time domain nodes, quite easy to

obtain; a more thorough case study is thus given in Fig. 14.

Contrary to the observations made in Section I, the dispersion

characteristics of meshes constructed with FDSCN’s are found
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Fig. 15. Dispersion characteristics of a uniform mesh constructed with various SCN’S and modelling an anisotropic lossless medium characterized by

Gz,r- = 4, eyy,?- = 8 and ez~,~ = 12. (a) zy plane. (b) zz plane. (c) ZY plane. /3A. = 1.8 throughout.

to vary in lossy media. They are however only sensitive to the

ratios en/d, p“/p’ and not to the actual values of permittivity

and permeability.

D. Lossless Anisotropic Media

A lossless anisotropic medium described by a diagonal

permittivity tensor is now considered. In a biaxial medium, the

velocity of a plane wave is dependent on the orientation of its

wave normal. In general, there can exist only two forward and

two backward propagating waves for each direction of wave

normal. The two forward propagating waves for example,

correspond to the two eigenwaves or polarizations permitted

by the medium for the given wave normal. The velocity of

these eigenwaves are obtained from Fresnel’s equation of wave

normals [21], [22]

where VP is the velocity of the eigenwaves and b., by and b.

are the components of the unit vector normal to the wave,
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defined as

i]lD X H (12)

D is the electric flux density and H the magnetic field

intensity. vZZ, Vvg and v=, are the wave velocities along the

principal axes
co co co

‘“ =-’ ‘Yy=v%=” “z=- (13)

where co = 11=. Fresnel’s equation of wave normals is

a quadratic equation in v; that can be solved analytically.

Two solutions for v: are obtained; they correspond to the

two allowed polarizations associated with the given wave

normal. The two roots of v; correspond to the forward and

backward traveling waves, thus four velocities are obtained

per wave normal. Equation (11) is solved in order to generate

the theoretical dispersionless curves presented in this section.

Fig. 15 compares the dispersion characteristics of four uni-

form meshes, A. = Ag = AZ = 5 cm, in a medium

characterized by C.Z,. = 4, eYY,r = 8 and CZZ,T = 12. The

type I FDSCN is not included in these results as it cannot

model anisotropy. The frequency of analysis is chosen such

that /?AZ = 1.8 where,6 is the phase constant of a plane wave

propagating in an isotropic medium having e. = 12.

IV. CONCLUSION

A thorough study of the numerical dispersion of various 3-D

TLM meshes has been presented. Five symmetrical condensed

nodes including three time domain and two frequency domain

nodes were used to construct the meshes. The dispersion char-

acteristics were obtained in lossless isotropic, lossy isotropic

and lossless anisotropic media. The effect of mesh grading

has also been investigated.

The results obtained reveal that under centain circumstances,

the time domain nodes introduce anisotropy into the dispersion

characteristics of isotropic media. It also appears that the

ability of the time domain nodes to simulate 10SSY media

is limited to the case where the losses are small. The most

significant degradation of the dispersion characteristics, how-

ever, occur when a coarse graded mesh is used, indicating

that the largest cell dimension should be much smaller than

the smallest wavelength under consideration.

The best way to improve TLM simulation accuracy is of

course mesh refinement. The results presented in this paper,

however, are of particular importance if a coarse mesh must

be used as the numerical dispersion and anisotropy introduced

may significantly corrupt the field calculations. In such a case,

these results may be used as an aid in the selection of the node

best suited to specific modelling requirements.”
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